The Inform Beginner’s Guide

Roger Firth and Sonja Kesserich

Third Edition: August 2004

With a Foreword by Graham Nelson

The Inform Beginner’s Guide

Authors: Roger Firth and Sonja Kesserich
Editor: Dennis G. Jerz

Cover: First Steps (watercolour and crayon on paper, 2002) Harry Firth (2000-)

This book and its associated example games are copyright © Roger Firth and
Sonja Kesserich 2004. Their electronic forms may be freely distributed provided
that: (a) distributed copies are not substantially different from those archived by
the authors, (b) this and other copyright messages are always retained in full, and
(c) no profit is involved. Exceptions to these conditions must be negotiated
directly with the authors (roger@firthworks.com and polilla@idecnet.com).

The authors assume no liability for errors and omissions in this book, or for
damages or loss of revenue resulting from the use of the information contained
herein, or the use of any of the software described herein.

Inform, the program and its source code, its example games and documentation,
are copyright © Graham Nelson 1993-2004.

First Edition: April 2002
Second Edition (with minor revisions): August 2002
Third Edition (alignment with Inform 6.30, further minor revisions): August 2004

CONTENTS

Contents
Foreword by Graham Nelson 7
About thisguide 9
Scope and approach 10
Presentation and style 10
Useful Internet resources 11
Acknowledgements 12
1« Just what is interactive fiction? 13
2°Toolsofthetrade 17
Inform on an IBM PC (running Microsoft Windows) 19
Inform on an Apple Macintosh (running OS X) 24
More about the editor 31
More about the compiler 31
More about the interpreter 31
3 ¢ Heidi: our firstInformgame 33
Creating a basic source file 33
Understanding the source file 35
Defining the game’s locations 37
Joining up the rooms 39
Adding the bird and the nest 42
Adding the tree and the branch 44
Finishing touches 46
4 - Reviewing the basics 49
Constants and variables 49
Object definitions 50
Object relationships — the object tree 52
Things in quotes 55
Routines and statements 56
SeHeidirevisited 59
Listening to the bird 59
Entering the cottage 61
Climbing the tree 63
Dropping objects from the tree 64
Is the bird in the nest? 66
Summing up 66
6 » William Tell: ataleisborn................................... 69
Initial setup 69
Object classes 72

CONTENTS

7 » William Tell: the earlyyears

Defining the street

Adding some props

The player’s possessions
Moving further along the street
Introducing Helga

8 * William Tell: in his prime

The south side of the square
The middle of the square
The north side of the square

9 « William Tell: theendisnigh

The marketplace

A diversion: working with routines
Return to the marketplace
Gessler the governor

Walter and the apple

Verbs, verbs, verbs

10 » Captain Fate: take 1

Fade up on: a nondescript city street
A hero is not an ordinary person

11 « Captain Fate:take 2

A homely atmosphere
A door to adore

12 « Captain Fate:take 3

Too many toilets
Don’t shoot! I'm only the barman

13 « Captain Fate: the finalcut

Additional catering garnish

Toilet or dressing room?

And there was light

Amazing technicolour dreamcoats
It's a wrap

14 - Some last lousy points

Expressions

Internal IDs

Statements

Directives

Objects

Routines

Reading other people’s code

15+ Compilingyourgame

Ingredients
Compiling a la carte
Switches

79
81
83
85
86

............... 91

91
92
101

103
103
104
107
108
109
111

119
119
127

131
131
136

147
147
150

157
157
158
161
166
169

173
173
174
174
176
177
179
181

189
189
192
193

16 - Debugging your game

Command lists

Spill them guts

What on earth is going on?
Super-powers

Infix: the harlot’s prerogative
No matter what

17 » *** You have won ***

Appendix A * How to play an IF game

Appendix B * “Heidi” story

Transcript of play
Game source code — original version
Game source code — revisited

Appendix C ¢ “William Tell” story

Transcript of play
Game source code
Compile-as-you-go

Appendix D « “Captain Fate” story ...

Transcript of play
Game source code
Compile-as-you-go

Appendix E ¢ Inform language

Literals

Names

Constants

Variables and arrays

Expressions and operators

Classes and objects

Manipulating the object tree

Message passing

Uncommon and deprecated statements
Statements

Routines

Flow control

Loop control

Displaying information

Verbs and actions

Other useful directives

Uncommon and deprecated directives

CONTENTS

198
198
199
201
202
203

205
209

213
213
214
216

219
219
222
233

237
237
241
255

257
257
257
257
258
258
259
259
259
259
260
260
260
260
261
261
262
262

CONTENTS

Appendix F e Informlibrary
Library objects
Library constants
User-defined constants
Library variables
Library routines
Object properties
Object attributes
Optional entry points
Group 1 actions
Group 2 actions
Group 3 actions
Fake actions

FOREWORD BY GRAHAM NELSON
Foreword by Graham Nelson

t would, I think, be immodest to compare myself to Charles
Bourbaki (1816-97), French hero of the Crimean War and

* renowned strategist, a man offered nothing less as a reward than the
throne of Greece (he declined). It may be in order, though, to say
a few words about his fictitious relative Nicholas, the most dogged, lugubrious,
interminably thorough and clotted writer of textbooks ever to state a theorem.
Rather the way Hollywood credits movies for which nobody wants the blame to
the director “Alan Smithee” (who by now has quite a solid filmography and even
gets the occasional cinema festival), so in mathematics many small results are
claimed to be the work of Nicholas Bourbaki. Various stories are told of the birth
of Bourbaki, under whose name young Parisian mathematicians have clubbed
together since 1935 to write surveys of whole fields of algebra. His initials, it may
be noted, are NB. Some say “Bourbaki” was an in-joke at the Ecole Normale
Supérieure (much as “zork” and “foobar” were at MIT), going right back to a
practical joke in 1880 when a pupil successfully impersonated a visiting “General
Claude Bourbaki”. Folklore also has it that the real general was notorious when
on manoeuvres for being able to eat anything if need be — stale biscuit, raw
turnips, his horse, his horse’s hay, his horse’s leather nosebag that the hay used
to be in —just as Nicholas Bourbaki would have to eat everything there was to eat
in the theory of algebra, no matter how tooth-grinding or chewy. To give credit
where it’s due, Bourbaki’s forty volumes are quite useful. Or, actually, they
aren’t, but it’s nice to know they’re there.

It was on reading this present book that I realised the melancholy truth: that my
own volume on Inform, the Designer’s Manual, is a Bourbaki. It has to cover every
last thing, from Icelandic accents to assembly language to fake actions, not to
mention fake fake actions, to grouping together almost-but-not-quite-identical
objects such as Scrabble tiles — matters which a dedicated Inform designer might
need to look up once in a lifetime, or then again might not. To be sure, the basics
do turn up every so often, especially in Chapters II and III, but despite my best
intention it is a gentle introduction only if you pick your way through as if on
stepping stones. This book, on the other hand, is a follow-as-you-go tutorial,
covering the basics thoroughly and a little at a time. Where the Designer’s Manual
tries never to retrace its steps, so for instance there is just one section on locations,
the Beginner’s Guide works its way through three whole games, giving it three
chances to visit every subject, reinforcing and showing a little more each time.

I should like to say that my first reaction, when out of the blue the authors sent
me advance proofs, was to exclaim with delight at the lucid, uncluttered, sensible
approach. Truthfully, however, that was my third reaction, the first being
jealousy (it’s all right for you, you don’t have to document how the parser
calculates GNA sets for noun clauses) and the second pique (you’ve cast the
gizbru spell: turn dangerous object into a harmless one at my book). When it comes

FOREWORD BY GRAHAM NELSON

down to it, though, there is no greater compliment any writer can be paid than
to have someone else choose to write a book about his work, so I thank Roger
and Sonja for their gesture, as well as the fine job they have done.

That is quite enough talking about myself, as Inform belongs to all its users, to
the hundreds of serious writers of interactive fiction who find it helpful, and for
almost a decade it has been a collective enterprise. Today nobody remembers
who suggested what. Its world-modelling rules now resemble a New England
patchwork quilt, to which each house in the village contributes one woven
square. As you read this book, you might want to bear in mind that such a quilt
is never finished, and always has room for one more square from a newly arrived

neighbour.

St Anne’s College
University of Oxford
April 2002

ABOUT THIS GUIDE

About this guide

If they asked me, I could write a book;
About the way you TALK, and LISTEN; And LOOK.
— with apologies to Richard Rodgers and Lorenz Hart.

“\ ext adventures, otherwise known collectively as interactive fiction
R+ (IF), were highly popular computer games during the 1980s. As
j I technology evolved they faded from the market, unable to compete

ke with increasingly sophisticated graphical games; however, IF was
far from dead. The Internet grew, and Usenet discussion forums offered a focal
point for fans of the genre. By developing IF programming tools and systems,
organising contests and writing tutorials and reviews, these enthusiasts have led
a revival responsible for many notable works, including some whose quality
arguably surpasses that of the best commercial titles of the 1980s.

Nowadays, IF is a hobby; almost everything that you need to begin writing your
own text adventures is available, for free, on the Internet. While expert
programmers may relish the considerable challenge of creating interactive fiction
using a generalised language such as BASIC or C, specialist IF tools have largely
solved the fundamental world-building issues. The most common systems are
Graham Nelson’s Inform — our subject matter — and Mike Roberts’ TADS (Text
Adventure Development System). New hopefuls arrive each year, but few
achieve widespread acceptance; the majority of today’s IF (and virtually all the
works generally regarded as interesting, innovative, sophisticated, etc.) have
been created with either one or the other. In our view, only TADS bears
comparison with Inform in popularity, in being able to handle simple and
complex stories, and in availability on PCs, Macs, hand-held devices and a wide
variety of other computers. But, since you’re reading our guide, we’ll assume that
you’ve already made a choice, and decided to give Inform a try.

We aim to provide a grounding in Inform basics. When you have learnt a little
about it, you'll be able to design simple games for your friends to play and, as you
become more accomplished, which you can share via the Internet with
enthusiasts worldwide. However, if you simply want to play1 games written by
others — rather than write them yourself — then you don’t need to learn Inform,
and this guide isn’t for you.

1. If you feel confused about IF in general or about this distinction between writing and
playing in particular, try glancing ahead at “Just what is interactive fiction?” on page 13
and at “How to play an IF game” on page 209; also, you may find the Ifaq at
http://www.plover.net/ ~ textfire/raiffaq/ifaq/ helpful.

http://www.plover.net/~textfire/raiffaq/ifaq/
http://www.plover.net/~textfire/raiffaq/ifaq/

ABOUT THIS GUIDE

Scope and approach

Because this is only an introduction to Inform, many features are treated rather
superficially, or ignored altogether. The definitive text is Graham Nelson’s Inform
Designer’s Manual (Fourth Edition, July 2001), commonly known as the DM4; you
cannot hope to use Inform successfully without having this splendid book by
your side. Our guide should be seen merely as a supplement to the DM4, offering
step-by-step descriptions of those aspects of Inform which are most important on
first acquaintance. In any matter where we seem at odds with what Graham has
written, you should assume that he is right and that we are, well, confused.

As a tutorial, this guide is intended to be printed out and then read sequentially;
it isn’t meant for online usage or designed as a reference manual, though it does
provide brief summaries of Inform’s language and library. Our approach is to
teach you about Inform through the creation of three games: all short, all
playable to completion. “Heidi” is just about as simple as an IF game can be, but
still manages to introduce a range of important concepts. “William Tell”, a
retelling of the famous folk tale, is nearly as brief but roams more widely in its
use of Inform’s capabilities. Finally “Captain Fate” presents a comic-book hero
in urgent need of a change. By the end of the guide, we’ll have touched on less
than half of Inform’s capabilities, but we hope we’ll have mentioned most of the
things that matter when you’re starting out to design your first Inform game.

One final point: Inform is a powerful system, often offering several different ways
of tackling a particular design requirement. We’ve tried to present things as
simply and consistently as possible, but you shouldn’t be surprised to discover
other approaches, maybe shorter, maybe more efficient, than those shown here.

Presentation and style

Most of the guide’s text appears in this typeface, except where we’re using words
which are part of the Inform system (like print, Include, verbLib) or are extracted
from one of our games (like bird, nest, top_of_tree). Terms in bold type are
included in the glossary — Appendix G on page 273. We switch to italic type for
a placeholder: for example you should read the Inform statement:

print "string";

as meaning “display on the player’s screen the arbitrary character or characters
which are represented here by the placeholder string”. Examples might include:

print "Fourscore and seven years ago our fathers brought forth on this continent
a new nation, [...] and that government of the people, by the people,
for the people shall not perish from the earth.";

7] print "Hello world!";
[é

We place the “Tvpe” symbol alongside game fragments which you can type in as
a part of our working examples. This differentiates them from other code
snippets whose only purpose is to illustrate some particular feature.

10

ABOUT THIS GUIDE

Useful Internet resources

One of our basic assumptions — along with your burning desire to learn Inform
and your ability to work comfortably with the files and folders on your computer
— is that you have access to the Internet. This is pretty well essential, since almost
everything you need is available only via this medium. In particular, you’ll find
much helpful material at these locations:

http://www.inform-fiction.org/

The Inform home page, maintained by Graham Nelson and a small team of
helpers. Most important, this is where you can find the Inform Designer’s
Manual in PDF format.

http://mirror.ifarchive.org/

The IF Archive (or actually a high-speed mirror copy of it), from which you
can download almost anything that’s free and in the public domain. For a
clickable map of Inform-related parts of the Archive, see
http://www.firthworks.com/roger/informfag/hh.html.

NOTE: prior to August 2001, the IF Archive was located elsewhere, at
ftp://ftp.gmd.de/if-archive/, and references to that location can still
occasionally be found. Do not use the old location: any information still
available from there is likely to be out-of-date.

http://www.firthworks.com/roger/

Roger Firth’s Inform pages, including the Informary (what’s new in Inform?),
and the Inform Frequently Asked Questions (FAQ) pages.

http://www.plover.net/~textfire/raiffaq/

A more general list of FAQs about IF authorship, covering both Inform and
the other main systems.

news:rec.arts.int-fiction

The Usenet newsgroup for authors of IF, commonly known by the
abbreviation RAIF. Here you’ll find discussion on IF technology, criticism
and game design issues, and fast, friendly and knowledgeable assistance with
your own “how do I...” questions (but please, look in the manual first).

news:rec.games.int-fiction

The complementary newsgroup for IF players, often known as RGIF.

11

http://www.inform-fiction.org/
http://www.firthworks.com/roger/
http://www.plover.net/~textfire/raiffaq/
http://mirror.ifarchive.org/
http://groups.google.com/groups?group=rec.arts.int-fiction
http://groups.google.com/groups?group=rec.games.int-fiction
http://www.firthworks.com/roger/informfaq/hh.html

ABOUT THIS GUIDE

Acknowledgements

Becoming sufficiently conversant with Inform to be able to share it with others is
not something done quickly or in isolation. In getting to where we are today, we
have been assisted at many times and in many ways by the notably supportive
and good-natured people, far too numerous to list by name, who make
rec.arts.int-fiction such an invaluable IF resource. We are grateful to you all.

In creating this guide, we have received specific help from a number of people.
First and foremost we must mention Graham Nelson, who kindly wrote the
Foreword, and delighted us with long and detailed lists of helpful comments and
suggestions on two of our drafts; also Dennis G. Jerz, who patiently and skilfully
edited the text, making innumerable improvements to our often wayward and
inconsistent prose. David Cornelson supervised the Second Edition’s
transformation into professionally printed respectability. Further assistance came
from Barney Firth, Christine Firth, Harry Firth, Megan Firth, Jim Fisher,
Rosemary Frezza, Phil Graham, Graham Holden, Paul Johnson, Yoon Ha Lee,
Brian Pylant, Jo Quinn, Milos Radovanovic, Muffy St. Bernard, Gunther
Schmidl, Emily Short, Curt Siffert, A. Sloe, Pavel Soukenik, Elise Stone, Brent
VanFossen and R. Cliff Young. Thank you: it is impossible to overstate the value
of this freely given support and assistance.

The drop capitals, and their associated poem, are from “A Picture Alphabet”,
digitised from a collection of public domain woodcuts, circa 1834, by Steven J.
Lundeen of emerald city fontwerks.

All credit to the generosity of http://briefcase.yahoo.com/ for making
international file-sharing such a breeze.

Finally, of course, we owe an enormous debt of gratitude to Graham Nelson for
devising it all, thereby giving us the opportunity - first independently and later
in enjoyable collaboration - of using, and eventually of presenting, the Inform
text adventure development system.

Roger Firth
Wallingford, England

Sonja Kesserich
Madrid, Spain

August 2004

12

http://briefcase.yahoo.com/

1+ JUST WHAT IS INTERACTIVE FICTION?

1 « Just what is interactive fiction?

A was an archer, who shot at a frog;
B was a butcher, who had a great dog.

efore we start learning to use the Inform system, it’s probably
sensible to consider briefly how IF, which has many narrative
elements, differs from regular storytelling. Before we do that,
though, let’s look at an example of a familiar folk tale.

%)

i ﬁJ

¢There was once a man called Wilhelm Tell, from high in the Swiss Alps near the
town of Altdorf. A hunter and a guide, a proud mountaineer, he lived by his skills

in tracking and archery. It happened one day that Wilhelm visited the town to
buy provisions, and he took his son Walter with him.

The region was at the time governed by Hermann Gessler (a vain and petty man
appointed as vogt by the Austrian emperor), who attempted a show of power
over his subjects by placing his hat on a pole in the town square, for everyone to
salute. Reluctant citizens were “encouraged” by a troop of the vogt’s soldiers,
who made sure that their bows were sufficiently respectful.

Wilhelm knew of the hat, and of the humiliating exercise in obeisance. So far he
had managed to avoid the town’s square, sure that — given his open dislike for the
vogt — his refusal to bend the knee would cause trouble. Today, however, he
needed to pass near the pole to reach Johansson’s tannery.

If Wilhelm had hoped for a lucky break, we’ll never know. The square was filled
with market-day crowds; the soldiers were especially keen in their salute-
enforcing duties, challenging everyone with loud shouts and the occasional
coarse expletive. Wilhelm threw a protective arm over his son’s shoulder and
walked determinedly without looking at the pole or the guards.

A soldier called to him; Wilhelm took no notice. Other guards focused their
attention on the archer. “Salute the vogt’s hat,” he was told. A tense silence
followed. Wilhelm tried to keep going, but by now he was surrounded. The men
knew of him; one counselled Wilhelm to give a cursory nod towards the hat and
be done. Everybody in the vicinity was watching, so the disrespect could not be
ignored. There was a long pause. Wilhelm refused.

Word was sent to Gessler, who rushed to the square with reinforcements. The
little man was delighted at the chance of making an example of the trouble-
maker. He mockingly recounted the many skills of Herr Tell, speculating that
such mastery maybe accounted for the pride that prevented acknowledgement
of the Emperor’s authority. The vogt understood all that, and would give him a
fair chance. If Wilhelm were able to shoot true at an apple from fifty paces,
Gessler would be inclined to show mercy; however, to make things interesting,
the apple was to be balanced on Walter’s head.

13

1+ JUST WHAT IS INTERACTIVE FICTION?

Everything was set up. Wilhelm selected and mounted an arrow and slowly
raised the bow, conscious of the motionless and brave stance that Walter was
displaying. He pulled, feeling the tension mount on the string and his fingers,
through his hands, into his arms. He’d made much more difficult shots in the
past, at fleeting deer, at soaring birds; but this was the life of his son... he could
not fail, would not fail.

Wilhelm let loose. The arrow flew straight and true, violently pinning the apple
to the tree behind the boy. The crowd exploded in a roar of relief and admiration,
and Gessler, disappointed, had no option but to let them go.

Years later, Wilhelm led an uprising against the vogt... but that’s another story.??

And now an extract from the same tale, this time in the form of a tiny text
adventure game. If you’re new to interaction with text adventures you’ll find
some general instructions in “How to play an IF game” on page 209, and you can
see a complete transcript of the game in the “William Tell” story on page 219:

14

A street in Altdorf

The narrow street runs north towards the town square. Local folk are pouring
into the town through the gate to the south, shouting greetings, offering
produce for sale, exchanging news, enquiring with exaggerated disbelief about
the prices of the goods displayed by merchants whose stalls make progress even
more difficult.

"

"Stay close to me, son," you say, "or you'll get lost among all these people."

>G0 NORTH

Further along the street

People are still pushing and shoving their way from the southern gate towards
the town square, just a Tittle further north. You recognise the owner of a fruit
and vegetable stall.

Helga pauses from sorting potatoes to give you a cheery wave.

"Hello, Wilhelm, it's a fine day for trade! Is this young Walter? My, how he's
grown. Here's an apple for him -- tell him to mind that scabby part, but the
rest's good enough. How's Frau Tell? Give her my best wishes."

>INVENTORY
You are carrying:
an apple
a quiver (being worn)
three arrows
a bow

>TALK TO HELGA
You warmly thank Helga for the apple.

>GIVE THE APPLE TO WALTER
"Thank you, Papa."

1+ JUST WHAT IS INTERACTIVE FICTION?

>NORTH

South side of the square

The narrow street to the south has opened onto the town square, and resumes at
the far side of this cobbled meeting place. To continue along the street towards
your destination -- Johansson's tannery -- you must walk north across the
square, in the middle of which you see Gessler's hat set on that Toathsome pole.
If you go on, there's no way you can avoid passing it. Imperial soldiers jostle
rudely through the throng, pushing, kicking and swearing Toudly.

Some of the more obvious differences are highlighted by these questions:

Who is the protagonist?

Our example of narrative prose is written in the third person; it refers to the
hero as “Wilhelm” and “he” and “him”, watching and reporting on his
activities from afar. In this sample IF game, you are the hero, seeing
everything through Wilhelm’s eyes.

What happens next?

The regular narrative is intended to be read once, straight through from
beginning to end. Unless you didn’t pay attention the first time, or you're
planning to critique the story, there’s generally no need to go back and read
a sentence twice; if you do, you’ll find exactly the same text. The author leads
the way and sets the pace; you, as the reader, just go along for the ride.

In IF, that’s usually much less true. The author has created a landscape and
populated it with characters, but you choose how and when to explore it. The
game evolves, at least superficially, under your control; perhaps you explore
the street first and then the square, perhaps the other way round. There
usually are multiple paths to be found and followed — and you can be pretty
certain that you won’t discover them all, at least on first acquaintance.

How does it all turn out?

You can tell when you’ve come to the end of a regular narrative — you read
the last sentence, and you know there’s no more. In IF, it’s clear enough
when you reach an end; what’s much less apparent is whether that’s the only
conclusion. In the transcript from the example game, you win by shooting
the apple from Walter’s head. But what if you miss? What if you hit him by
mistake? Or fire instead at the hated vogt? Or even stand the tale on its head
by bowing obsequiously to the governor’s hat and then going about your
business? All of these are possible ways in which the game could come to an
end. The phrase “what if” is the key to writing successfully, and should
always be in the forefront of an IF designer’s mind.

Where did Helga come from?

You’ll notice that Helga and her stall don’t appear in the regular narrative;
she’s a distraction from the tale’s momentum. But in the IF game, she fulfils

15

1+ JUST WHAT IS INTERACTIVE FICTION?

a number of useful functions: mentioning the names “Wilhelm”, “Walter”
and “Frau Tell” (so that you know who the tale’s about), introducing the
all-important apple in a natural manner and, above all, providing an
opportunity for the “I” in IF — some interactivity. Without that — the chance
to interact with the tale’s environment — the game is little different from a
conventional piece of fiction.

* That item looks interesting; can you tell me more about it?

In the regular narrative, what you see is what you get; if you want to know
more about alpine life in the fourteenth century, you’ll need to consult
another source. IF, on the other hand, offers at least the possibility of delving
deeper, of investigating in greater detail an item which has been casually
mentioned. For example, you could have explored Helga’s stall:

. How's Frau Tell? Give her my best wishes."

>EXAMINE THE STALL
It's really only a small table, with a big heap of potatoes, some carrots
and turnips, and a few apples.

>EXAMINE THE CARROTS
Fine locally grown produce.

You see those descriptions only if you seek them; nothing you find there is
unexpected, and if you don’t examine the stall, you’ve not missed anything
important. Nevertheless, you’ve enhanced the illusion that you’re visiting a
real place. Such details would rapidly grow tedious if the stall and its contents
were described in full each time that you pass them.

* How do I work this thing?

Whereas the presence of Helga is an elaboration of the folk tale, the shooting
of the arrow (it’s in the transcript in “William Tell” story on page 219, not in
the extract above) illustrates the opposite principle: simplification. The tale
builds dramatic tension by describing each step as Wilhelm prepares to shoot
the apple. That’s OK; he’s been an archer all his life, and knows how to do
it. You, on the other hand, probably know little about archery, and shouldn’t
be expected to guess at the process and vocabulary. Let’s hope you know that
you need to shoot at the apple — and that’s all it takes. The game explains
what was involved, but doesn’t force you through each mundane step.

Of course, all of these are generalisations, not universal truths; you could find fine
works of IF which contradict each observation. However, for our purposes as
beginners in the craft of IF design, they represent useful distinctions between IF
and conventional fiction.

We’ll come back to the “William Tell” tale in a later chapter, but before then
we’ll work through an even simpler example. And before either of those, we
need to download the necessary files which will enable us to write Inform games.

16

2+ TOOLS OF THE TRADE

2 * Tools of the trade

C was a captain, all covered with lace;
D was a drunkard, and had a red face.

g Onventional - static — fiction can be written using nothing more than
\ pencil and paper, or typewriter, or word-processor; however, the
requirements for producing IF are a little more extensive, and the
creative process slightly more complex.

*+ For static fiction, you first write the text, and then you check it by reading
what you’ve written.

+ For IF, you still have to write all of the text, but you also have to establish
what text gets displayed when. Once you have written the necessary Inform
instructions, you use a compiler program to convert them into a playable
format. The resulting information is played by an interpreter program,
which permits you to interact with your developing world.

With static fiction What You Write Is What You Read, but with IF the format in
which you initially write the game doesn’t bear much resemblance to the text
which the interpreter ultimately displays. For example, the “William Tell” game,
in the form that we wrote it, starts like this:

|
Constant Story "William Tell";
Constant Headline

""A simple Inform example

“by Roger Firth and Sonja Kesserich.”";

Include "Parser";
Include "VerbLib";

|
! Object classes

Class Room
has Tight;

You will never need to look at it in the form produced by the compiler:
050000012C6C2C2D1EF6010A0C4416900010303230313031004253FEA90C0000

0000000000000000000000000000168F000000000000010200000000362E3231

but, as you’ll notice from the full transcript in “William Tell” story on page 219,
the player will see the following:

17

2+ TOOLS OF THE TRADE

The place: Altdorf, in the Swiss canton of Uri. The year is 1307, at which time
Switzerland is under rule by the Emperor Albert of Habsburg. His Tocal governor
-- the vogt -- is the bullying Hermann Gessler, who has placed his hat atop a
wooden pole in the centre of the town square; everybody who passes through the
square must bow to this hated symbol of imperial might...

Clearly, there’s more to writing IF than just laying down the words in the right
order. Fortunately, we can make one immediate simplification: the translated
form produced by the Inform compiler - those cryptic numbers and letters held
in what’s known as the story file - is designed to be read by the interpreter
program. The story file is an example of a “binary” file, containing data intended
for use only by a computer program. Forget all that unreadable gibberish.

So that leaves just the first form - the one starting “constant Story” — which
represents the tale written as a piece of IF. That’s the source file (so called
because it contains the game in its original, source, form) which you create on
your computer. The source file is a “text” (or “ASCII”) file containing words and
phrases which can be read — admittedly after a little tuition, which is what this
guide is all about — by humans.

How do you create that source file? Using a third software program: an editor.
However, unlike the compiler and interpreter, this program isn’t dedicated to the
Inform system - or even to IF. An editor is an entirely general tool for creating
and modifying text files; you’ve probably already got a basic one on your
computer (an IBM PC running Windows comes with NotePad, while an Apple
Macintosh has SimpleText or TextEdit), or you can download a better one from
the Internet. An editor is like a word-processing program such as MS Word, only
much less complex; no fancy formatting features, no bold or italics or font
control, no embedded graphics; it simply enables you to type lines of text, which
is exactly what’s needed to create an IF game.

If you look at the game source on the previous page, or in the “William Tell”
story on page 219, you’ll notice Include "parser”; and Include "verbLib"; a few
lines down from the top of the file. These are instructions to the Inform compiler
to “include” - that is, to merge in the contents — of files called parser.nh and
verbLib.h. These are not files which you have to create; they’re standard library
files, part of the Inform system. All that you have to do is remember to Include
them in every game that you write. Until you’ve a fair understanding of how
Inform works, you’ve no need to worry about what they contain (though you can
look if you want to: they’re readable text files, just like the ones this guide will
teach you to write).

So, we’ve now introduced all of the bits and pieces which you need in order to
write an Inform adventure game:

* atext editor program which can create and modify the source file
containing the descriptions and definitions of your game. Although it’s not
recommended, you can even use a word-processing program to do this, but
you have to remember to save your game in Text File format;

18

2+ TOOLS OF THE TRADE

* some Inform library files which you Inciude in your own game source file
in order to provide the model world - a basic game environment and lots
of useful standard definitions;

+ the Inform compiler program, which reads your source file (and the library
files) and translates your descriptions and definitions into another format —
the story file — intended only for...

* an Inform interpreter program, which is what players of your game use. A
player doesn’t require the source file, library files or compiler program, just
the interpreter and the game in compiled format (which, because it’s a binary
file not meaningful to human eyes, neatly discourages players from cheating).

All of those, apart from the editor, can be downloaded for free from the IF
Archive. One approach is to fetch them individually, following the guidance on
Graham’s page: visit http://wwu.inform-fiction.org/ and look for the “Software”
section. However, if you’re using a PC or a Mac, you'll find it easier to download
a complete package containing everything that you need to get started.

Inform on an IBM PC (running Microsoft Windows)

Although the Windows operating system is upgraded on a fairly regular basis, its
basic capabilities and ways of working have remained more-or-less consistent for
many years. The information here applies to PCs running Windows 95 onwards.

Installing and testing Inform
Follow these steps:

1. Download http://www.firthworks.com/roger/downloads/inform_pc_env.zip to a
temporary location on your PC.

2. Use atool like WinZip to unzip the downloaded file, giving you a new Infornm
folder. Move this folder (and its contents) to a suitable location on your PC -
a good place would be ¢:\My Documents\Inform, but you could also use
C:\Documents and Settings\yourname\My Documents\Inform, C:\Inform Or
C:\Program Files\Inform. You should now have this set of folders:

19

http://www.inform-fiction.org/
http://www.firthworks.com/roger/downloads/inform_pc_env.zip

2+ TOOLS OF THE TRADE

20

EI_| Inform Al Infarm files are within this hierarchy of folders

=11 Bin Interpreters and tools
----- 1 Frotz Frotz interpreter program
----- 1 Glulze Glulxe interpreter program (placeholder)
-----] Ztools Ztoolz utility programs (placeholder)

----- 1 Doc Documentation

B Games “our aven and others' games
----- 1 Download Cther people's games from the Archive
----- 1 MuGamel A template for your ouwn creations...
----- 1 MuGamez .ehich you can copy and rename to suit each game

Compiler and Library files
BiPlatform [£-machine+Glul compiler and liorary files
Library packages cortributed to the Archive

In order to make the download small and fast, these folders include just
enough to get you started as an Inform designer — the compiler and
interpreter programs, the library files, the Ruins.inf example file from the
Inform Designer’s Manual, and a template for your own first game. A few other
folders are included as placeholders where you could later download
additional components, if you wanted them. As soon as possible, you should
download the Inform Designer’s Manual into the Inform\Doc folder — it’s an
essential document to have, and has been omitted from this download only
because of its 3MB size.

To verify that the downloaded files work properly, use Windows Explorer to
display the contents of the Inform\Games\MyGamel folder: you will see the two
files MyGamel.bat and MyGamel.inf:

| Size | Type | Madiied |
MyGame1.bat 1B M5-D0OS Batch File 11/02/2002 03.06
MyGamel .inf 2KB Setup Information 11/02/2002 03:06

MyGamel.inf is a tiny skeleton game in Inform source format. By convention,
all Inform source files have an extension of .inf; Windows has an inbuilt

definition for . inf files, and so shows its Type as “Setup Information”, but this
doesn’t seem to matter. If you double-click the file, it should open in NotePad
so that you can see how it’s written, though it probably won’t mean much -

yet.

MyGamel.bat is an MS-DOS batch file (an old kind of text-only computer
program, from the days before point-and-click interfaces) which runs the
Inform compiler. Double-click it; a DOS window opens as the game
compiles, and you’ll see this:

2+ TOOLS OF THE TRADE

C:\My Documents\Inform\Games\MyGamel>..\..\Lib\Base\Inform MyGamel
+include_path=.\,..\..\Lib\Base,..\..\Lib\Contrib | more

Inform 6.30 for Win32 (27th Feb 2004)

C:\My Documents\Inform\Games\MyGamel>pause "at end of compilation"
Press any key to continue . . .

Press the space bar, then close the DOS window.

NOTE: on Windows NT, 2000 and XP, the DOS window closes of its own
accord when you press the space bar.

5. A story file myGamel.z5 has appeared in the folder; this is the compiled game,
which you can play using an interpreter:

| Size | Type | Madiied |
MyGame1.bat 1B M5-D0OS Batch File 11/02/2002 03.06
MyGamel .inf 2KB Setup Information 11/02/2002 03:06
MyGame1.25 TBKE Z5File 19/02/2002 13:25

The extension of .z5 signifies that the story file contains a Z-machine game
in Version 5 (today’s standard) format.

6. Use Windows Explorer to display the contents of the Inform\Bin\Frotz folder,
and double-click Frotz.exe; the interpreter presents an Open a Z-code Game
dialog box.

7. Browse to display the Inform\Games\MyGame1 folder, and select MyGame1.z5. Click
open. The game starts running in the Windows Frotz 2002 window.

8. When you tire of “playing” the game — which won’t take long - you can type
the QUIT command, you can select File > Exit, or you can simply close the
Frotz window.

9. Using the same techniques, you can compile and play Ruins.inf, which is
held in the 1nform\Games\Download folder. RUINS is the game used as an
example throughout the Inform Designer’s Manual.

Setting file associations

The business of first starting the interpreter, and then locating the story file that
you want to play, is clumsy and inconvenient. Fortunately, when you first run the
Frotz interpreter, it automatically creates an association with story files whose
extension is .z5. From now on, you’ll be able to play a game simply by
double-clicking its story file. If some any reason this doesn’t work, you can set up
the association yourself:

21

2+ TOOLS OF THE TRADE

1. Double-click MyGamel.z5; Windows asks you to select the program which is to
open it:
* type Z-code V5 Adventure as the “Description for...”

"

e click to select “Always use this program...’

« click other...

2. Browse to display the Inform\Bin\Frotz folder, and select Frotz.exe. Click open.

Changing the Windows icon

If the Windows icon that’s displayed alongside MyGamel.z5 doesn’t look right, you
can change it.

1. In Windows Explorer, either select view > Options... and click File Types, or
select Tools > Folder Options... and click File Types:

*+ select the game file type in the list, which is in order either of application
(Frotz) or of extension (Z5)

e click Edit...

2. In the Edit File Type dialog, click change Icon.

3. In the change Icon dialog, ensure that the file name is
Inform\Bin\Frotz\Frotz.exe, and select one of the displayed icons. Click ok to
close all the dialogs.

The files in the folder should now look like this:

| Size | Type | Madiied |
MyGame1.bat 1B M5-D0OS Batch File 11/02/2002 03.06
MyGamel .inf 2KB Setup Information 11/02/2002 03:06
% MyGamel.z5 TOKBE Z-code WS Adventure 19/02/2002 13.25

Compiling using a batch file

You can view — and of course change - the contents of MyGame1.bat, the batch file
which you double-click to run the compiler, using any text editor. You’ll see two
lines, something like this (the first chunk is all on one long line, with a space
between the MyGame1 and the +include_path):

..\..\Lib\Base\Inform MyGamel

+include_path=.\,..\..\Lib\Base,..\..\Lib\Contrib | more
pause "at end of compilation"

These long strings of text are command lines - a powerful interface method
predating the icons and menus that most computer users know. You won’t need
to master the command line interface in order to start using Inform, but this

section will tell you what these particular command lines are doing. There are
four parts to the first line:

22

2+ TOOLS OF THE TRADE

1. 1nform refers to the compiler program, and ..\..\Lib\Base is the name of the
folder which contains it (addressed relative to tzisfolder, the one which holds
the source file). Double-dots stand for “go to the parent folder”.

2. MyGamel is the name of the Inform source file; you don’t need to mention its
extension of .inf if you don’t want to.

3. +include_path=.\,..\..\Lib\Base,..\..\Lib\Contrib tells the compiler where to
look for files like parser and verbLib which you’ve Included. Three locations
are suggested: this folder, which holds the source file (.\); the folder holding
the standard library files (..\..\Lib\Base); the folder holding useful bits and
pieces contributed by the Inform community (..\..\Lib\Contrib). The three
locations are searched in that order.

NOTE: on the command line, you sometimes also see a compiler switch such
as -S, used for controlling detailed aspects of how the compiler operates.

Rather than do that here, we find it more convenient to place any necessary
switches at the very top of the source file, as we’ll explain in the next chapter.

4. | more causes the compiler to pause if it finds more mistakes than it can tell
you about on a single screen, rather than have them scroll off the top of the
MS-DOS window. Press the space bar to continue the compilation.

The second line — pause "at end of compilation” — just prevents the window from
closing before you can read its contents, as it otherwise would on Windows NT,
2000 and XP.

You’ll need to have a new batch file like this to match each new source file which
you create. The only item which will differ in the new file is the name of the
Inform source file — MyGamel in this example. You must change this to match the
name of the new source file; everything else can stay the same in each .bat file
that you create.

Getting a better editor

Although NotePad is adequate when you’re getting started, you’ll find life much
easier if you obtain a more powerful editor program. We recommend TextPad,
available as shareware from http://www.textpad.com/; in addition, there are some
detailed instructions at http://www.onyxring.com/informguide.aspx?article=14 on
how to improve the way that TextPad works with Inform. The biggest single
improvement, the one that will make game development dramatically simpler, is
being able to compile your source file from within the editor. No need to save the
file, switch to another window and double-click the batch file (and indeed, no
further need for the batch file itself): just press a key while editing the file — and
it compiles there and then. You can also run the interpreter with similar ease. The
convenience of doing this far outweighs the small amount of time needed to
obtain and configure TextPad.

23

http://www.textpad.com/
http://www.onyxring.com/informguide.aspx?article=14

2+ TOOLS OF THE TRADE

Inform on an Apple Macintosh (running OS X)

Whereas our instructions for using Inform on a PC apply to just about all versions
of Windows, on the Macintosh we need to be more precise. Our guidance here
is specifically for Mac OS X, rather than for its predecessor OS 9, and it may be
helpful if we first mention a few relevant differences.

Mac OS X is a robust system constructed around - or on top of - BSD! UNIX.
There are several kinds of applications that will run on your Mac OS X:

* Aqua: specifically designed for the Graphical User Interface of Mac OS X,
and taking advantage of its underlying technologies. Broadly, there are two
types of Aqua application:

* Cocoa: built with programming tools designed for Mac OS X.

* Carbon: built with the programming tools designed for Mac OS 9 and
earlier versions, but “translated” to take advantage of OS X.

* Classic: designed to work on Mac OS 9 and earlier versions. They need to
run in the Classic environment of OS X; roughly speaking, Classic is an
emulation of the older Mac systems.

* Xl11: based on a windowing system designed for the UNIX/Linux world.
They need an X-Windows server to run, and their appearance and
functionality may seem a lot different to what the Aqua user expects.

+ UNIX: most UNIX programs (including Linux) will run on your Mac OS X,
but they usually have to be accessed (or configured) from the UNIX core of
your Mac, through the Terminal utility.

These differences may be significant, since some of the tools designed to develop
and run IF on a Mac system (for example, ones you’ll find in the Archive) have
been built by programmers working in different environments with varying
technologies. We have tried to select tools that will make your life easy as a
beginner, but in time you may want to investigate alternative approaches.

Installing and testing Inform
Follow these steps:

1. Download http://www.firthworks.com/roger/downloads/inform_macosx_env.sit to
a temporary location on your Mac.

2. Use a tool like StuffIt Expander to unpack the downloaded file (if your
system configuration is standard, a mere double-click will make it self-extract
at the current location, if it hasn’t already expanded all by itself). You’ll now

1. “BSD” stands for Berkeley Software Distribution, the name of the UNIX derivative
distributed in the 1970s from the University of California, Berkeley, and used collectively
for the modern descendants of those distributions.

24

http://www.firthworks.com/roger/downloads/inform_macosx_env.sit

2+ TOOLS OF THE TRADE

have a new Inform folder. Move this folder (and its contents) to a suitable
location in your Mac.

NOTE: Itis a good idea for now to place it in your home directory; otherwise,
a few pre-configured items may not work as explained. Once you learn the
basics of the configuration, you may move the Inform folder to a different
location and hack all the defaults like the professionals do.

You should now have this set of folders:

All Inform files are within this hierarchy of folders
Interpreters and tools

.. Glulxe interpreter program (placeholder)

.. Zoom interpreter program

.. Ztools utility programs (placeholder)
Documentation

Your own and others’ games

Other people’s games from the archive

A template for your own creations

Compiler and library files

Inform compiler and library files

> |l‘ Contrib Library packages contributed to the Archive

In order to make the download small and fast, these folders include just
enough to get you started as an Inform designer — the compiler and
interpreter programs, the library files, the rRuins.inf example from the Inform
Designer’s Manual, and a template for your own first game, which you may
copy and rename each time you begin a new Inform project. A few other
folders are included as placeholders where you could later download
additional components, if you wanted them. As soon as possible, you should
download the Inform Designer’s Manual into the 1nform/Doc folder — it’s an
essential document to have, and has been omitted from this download only
because of its 3MB size.

To verify that the downloaded files work properly, use the Finder to display
the contents of the Inform/Games/MyGamel folder: you will see the files
MyGamel.command and MyGamel.inf:

J Name 4] Date Modified Size Kind
" About.htm 29/06/2004, 20:11 4 KB HTML
£ MyGamel.command 02/07/2004, 23:47 4 KB TerminalShellScript
[MyGamel.inf 02/07/2004, 23:55 8 KB FUJI BAS IMG document

MyGamel.inf is a tiny skeleton game in Inform source format. By convention,
all Inform source files have an extension of .inf. However, Mac OS X may
show its Kind as “FUJI BAS IMG document”, and try to open it with

25

2+ TOOLS OF THE TRADE

26

GraphicConverter. If you’re not a regular user of FUJI BAS IMG documents,
youwll probably want to change this. Either:

« right-click on the file (or Ctrl-click)

e select open with and choose other. ..

* in the open with dialog, go to the Applications folder and select TextEdit.
* click to select “Always open with”

« click open.

or:
+ right-click on the file (or Ctrl-click)

+ press Option, select Always open with and choose other. ..

* in the open with dialog, go to the Applications folder and select TextEdit.
« click open.

Now, if you double-click the file, it should open in TextEdit so that you can
see how it’s written, though it probably won’t mean much - yet.

NOTE: The above process may affect only this specific file. To change the
program that opens by default a/l .inf files, try this:

+ right-click on the file (or Ctrl-click)

* select Get Info

* in the open with tab, select TextEdit as the application

+ click the change A11... button, and confirm the change when asked.

MyGamel.command is a Terminal Shell Script (a UNIX executable command-line
file, a kind of text-only computer program from the days before
point-and-click interfaces) which runs the Inform compiler. Double-click it;
a UNIX window opens as the game compiles, and you’ll see something like
this (the working path will reflect your folder hierarchy):

Last Togin: Sat Jul 3 03:07:51 on ttypl

Welcome to Darwin!

/Users/Dave/Inform/Games/MyGamel/MyGamel.command; [Hal:~] Dave%

/Users/Dave/Inform/Games/MyGamel/MyGamel.command; exit
Inform 6.30 (27th Feb 2004)

Togout
[Process completed]

A story file MyGame1.z5 has appeared in the folder; this is the compiled game,
which you can play using an interpreter:

I Name 4| pate Modified Size Kind

1 About.htm 29/06/2004, 20:11 4KB HTML

) MyGamel.command 03/07/2004, 3:15 4 KB TerminalShellScript
_ MyGamel.inf 03/07/2004, 3:26 8 KB TextEdit Document
_| MyGamel.z5 04/07/2004, 16:10 80 KB Document

2+ TOOLS OF THE TRADE

The extension of .z5 signifies that the story file contains a Z-machine game
in Version 5 (today’s standard) format.

6. Use the Finder to display the contents of the Inform/Bin/zoom folder, and
double-click zoom; the interpreter presents an open dialog box.

7. Browse to display the Inform/Games/MyGamel folder, and select MyGame1.z5. Click
open. The game starts running in the Zoom window.

8. When you tire of “playing” the game — which won’t take long - you can type
the QUIT command, you can select Zoom > Quit Zoom, or you can simply close
the Zoom window.

Setting file associations

The business of first starting the interpreter, and then locating the story file that
you want to play, is clumsy and inconvenient. Fortunately, when the system first
“sees” the Zoom interpreter (which is a nice Aqua application) it automatically
creates an association with story files whose extension is .25 (and with other
Infocom formats). From now on, you’ll be able to play a game simply by
double-clicking its story file.

The files in the folder should now look like this:

Name 41 Date Modified Size | Kind
"X About.htm 29/06/2004, 20:11 4 KB HTML
1 MyGamel.command 03/07/2004, 3:15 4 KB TerminalShellScript
% MyGamel.inf 03/07/2004, 3:26 8 KB TextEdit Document
+ MyGamel.z5 04/07/2004, 16:12 80 KB Z-Code game

Compiling using a command-line file

If you have followed these instructions to configure your system, every time that
you need to compile your source code you just have to double-click on the file
MyGamel.command. However, this file is good only for this folder and for MyGamel. inf.

If you want to start coding another game, you may copy the folder mycame1 with
all its contents and rename it as you please (for example, MyGame2 or something
more appropriate). Inside the folder, you’ll also want to rename the relevant files:

MyGamel.inf might become MyGame2.1inf, Or MobyDick.inf, OT...
MyGamel.command would Change to match: MyGameZ.command, Or MobyDick.command.

You can view — and of course change — the contents of MyGame2.command, the
command file which you double-click to run the compiler, using any text editor.
You’ll see two lines, something like this (the second chunk is all on one long line,
with a space between the MyGamel and the +include_path):

cd ~/Inform/Games/MyGamel/

../../Lib/Base/inform630_macosx MyGamel
+include_path=./,../../Lib/Base,../../Lib/Contrib

27

2+ TOOLS OF THE TRADE

These long strings of text are command lines — a powerful interface method
predating the icons and menus that most computer users know. You won’t need
to master the command line interface in order to start using Inform, but this
section will introduce you to a few basic concepts to get your bearings.

The first line changes the working directory to ~/Inform/Games/MyGamel/. The
command cd (also known as chdir, short for “Change Directory to”) lets you
travel to the desired folder, specified by the path, in this case:
~/Inform/Games/MyGamel/. The ~ symbol stands for your home directory. That is, if
your user name were Dave, the above path is equal to:

/Users/Dave/Inform/Games/MyGamel/
You want to change that line so that it reads: cd ~/Inform/Games/MyGame2/
There are three parts to the second line:

1. inform630_macosx refers to the compiler program, and ../../Lib/Base is the
name of the folder which contains it (addressed relative to #iisfolder, the one
which holds the source file). Double-dots stand for “go to the parent folder”.

2. MyGamel is the name of the Inform source file; you don’t need to mention its
extension of . inf if you don’t want to. You’ll want to change this to match the
name of your new file: MyGame2

3. +include_path=./,../../Lib/Base,../../Lib/Contrib tells the compiler where to
look for files like parser and verbLib which you’ve Included in the source file
(this may sound confusing now, but it will make a lot of sense after you’ve
delved a bit deeper into this Guide). Three locations are suggested, separated
by commas: this folder, which holds the source file (./); the folder holding
the standard library files (../../Lib/Base); the folder holding useful bits and
pieces contributed by the Inform community (../../Lib/Contrib). The three
locations are searched in that order.

NOTE: on the command line, you sometimes also see a compiler switch such
as -5, used for controlling detailed aspects of how the compiler operates.

Rather than do that here, we find it more convenient to place any necessary
switches at the very top of the source file, as we’ll explain in the next chapter.

Once you’ve finished editing those lines, save the file (not saveas), overwriting the
original, and make sure that your text editor doesn’t append an extension like
.txt (TextEdit, the default editor that comes with OS X, is polite enough to ask
you about this).

You’ll need to have a new command file like this to match each new source file
which you create. The only item which will differ in the new file is the name of
the Inform source file — MyGamen. You must change this to match the name of the
new source file; everything else can stay the same in each .comnand file that you
create.

28

2+ TOOLS OF THE TRADE

Making your own command-line file

There are two peculiarities by which your system understands that
MyGamel.command is a Terminal Shell Script. One is the extension .conmand, and the
other is an attribute of the file which marks it as “executable” (the “executable
bits”). If it doesn’t meet both conditions, MyGame1.command won’t run as it should.

You have to be careful when editing this file: if you were, for instance, to open it
in a text editor and save it to a different location with a different name, the
executable bits might get lost, and when you double-click it, you would see:

Open Command File
>
The .command file 'fUsers/Dave/Inform/Games/

MyGame2 /MyGame2.command' could not open.
Most likely it is not executable.

(S

To make a command file from scratch (also, to fix this problem) you can follow
these steps:

1. Open any text editor and write (using your own path):

cd ~/Inform/Games/MyGameN/
../../Lib/Base/inform630_macosx MyGameN
+include_path=./,../../Lib/Base,../../Lib/Contrib

where MyGamen stands for the name you have chosen for your Inform project.

2. Save the file in the folder MyGamen and call it MyGamen. command. Make sure that
the text editor doesn’t append a .txt extension,; if it does, rename the file
manually.

3. Goto applications > Utilities and double-click on Terminal. This opens the
utility which provides you with a set of windows to access the UNIX
command line. Supposing the computer is named Hal, and the user Dave,
you should see something like this:

Last login: Wed Jun 30 18:05:55 on ttypl
Welcome to Darwin!
[Hal:~] Dave?%

4. Every time that you open a Terminal window, you’re at your home directory
(as noted by the tilde after the computer’s name). You can travel to your
working folder by typing:

cd Inform/Games/MyGameN

You’ll see how the path changes:
[Hal:~/Inform/Games/MyGameN] Dave%

Now you can make the command file executable with:

chmod 777 MyGameN.command

29

2+ TOOLS OF THE TRADE

5. Alternatively, you can omit the cd command if you give the full path to chmod:
chmod 777 ~/Inform/Games/MyGameN/MyGameN.command
This sets the executable bits for the file MyGamen. command.
6. Close the Terminal window.

Now, every time you need to compile your game, you can just double-click on
MyGameN.command from the Finder.

Getting a better editor

Although TextEdit is adequate when you’re getting started, you’ll find life much
easier if you obtain a more powerful editor program. We’d really like to
recommend one - there’s an exciting list of possibilities at
http://osx.hyperjeff.net/Apps/apps.php?sub=5 — but at the time of writing none of
them seems outstandingly suited to IF authorship. If you find one that works
really well, please let us know.

30

http://osx.hyperjeff.net/Apps/apps.php?sub=5
http://osx.hyperjeff.net/Apps/apps.php?sub=5

2+ TOOLS OF THE TRADE

More about the editor

As well as the ones that we recommend, other good text editors are listed at
http://www.firthworks.com/roger/editors/. One feature that’s well worth IOOking
out for is “hotkey compilation” — being able to run the compiler from within the
editor. Another is “syntax colouring”, where the editor understands enough of
Inform’s syntax rules to colour-code your source file; for example: red for
brackets, braces and parentheses [1 { } and (), blue for reserved words like
object and print, green for items in quotes like '..." and "...", and so on. Syntax
colouring is of great assistance in getting your source file correct and thus
avoiding silly compilation errors.

More about the compiler

The Inform compiler is a powerful but undramatic software tool; it does an awful
lot of work, but it does it all at once, without stopping to ask you any questions.
Its input is a readable text source file; the output is a story file, also sometimes
known as a Z-code file (because it contains the game translated into code for the
Z-machine, which we describe in the next section).

If you’re lucky, the compiler will translate your source file into Z-code; perhaps
surprisingly, it doesn’t display any form of “success” message when it succeeds.
Often, however, it fails, because of mistakes which you’ve made when writing the
game. Inform defines a set of rules — a capital letter here, a comma there, these
words only in a certain order, those words spelled just so — about which the
compiler is extremely fussy. If you accidentally break the rules, the compiler
complains: it refuses to write a Z-code file. Do not worry about this: the rules are
easy to learn, but just as easy to break, and all Inform designers inadvertently do
so on a regular basis. There’s some additional information about dealing with
these mistakes, and about controlling how the compiler behaves, in “Compiling
your game” on page 189.

More about the interpreter

One of the big advantages of the way Inform works is that a compiled game — the
Z-code story file — is portable between different computers. That’s not just from
one PC to another: exactly the same story file will run on a PC, a Mac, an Amiga,
UNIX workstations, IBM mainframes, PalmOS hand-helds, and on dozens of

other past, present and future computers. The magic that makes this happen is

the interpreter program, a software tool which pretends to be a simple computer
called a Z-machine. The Z-machine is an imaginary (or “virtual”) computer, but
its design has been very carefully specified, so that an expert programmer can

quite easily build one. And that’s exactly what has happened: a Macintosh guru
has built an Inform interpreter which runs on Apple Macs, a UNIX wizard has
built one for UNIX workstations, and so on. Sometimes, you even get a choice;

31

http://www.firthworks.com/roger/editors/

2+ TOOLS OF THE TRADE

for popular machines like the PC and the Mac there are several interpreters
available. And the wonderful thing is: each of those interpreters, on each of those
computers, is able to play every Inform game that’s ever been written and, as a
surprise bonus, all of the classic 1980s Infocom games like “Zork” and “The
Hitchhiker’s Guide to the Galaxy” as well!

(Actually, that last sentence is a slight exaggeration; a few games are very large,
or have pictures included within them, and not all interpreters can handle this.
However, with that small pinch of salt, it’s pretty accurate.)

That’s enough waffling: let’s get started! It’s time to begin designing our first
game.

32

3 « HEIDI: OUR FIRST INFORM GAME

3 * Heidi: our first Inform game

E was an esquire, with pride on his brow;
F was a farmer, and followed the plough.

ach of the three games in this guide is created step by step; you’ll get
most benefit (especially to begin with) if you take an active part, typing
, in the source code on your computer. Our first game, described in this
chapter and the two which follow, tells this sentimental little story:

¢Heidi lives in a tiny cottage deep in the forest. One sunny day, standing before
the cottage, she hears the frenzied tweeting of a baby bird,; its nest has fallen from
the tall tree in the clearing! Heidi puts the bird into the nest, and then climbs the
tree to place the nest back on its branch.”

It’s a very simple tale, but even so we’ll cover quite a lot of ground before we
have a finished Inform game. We’ll get there in stages, first making a very rough
approximation of the story, and then successively refining the details until it’s
good enough for an initial attempt (there’s time later for more advanced stuff).

Creating a basic source file

The first task is to create an Inform source file template. Every game that we
design will start out like this. Follow these steps:

1. Create an Inform\Games\Heidi folder (maybe by copying Inform\Games\MyGame1).

NOTE: in this guide, we use the PC convention of placing a backslash
between folder names. On a Macintosh, use a regular slash:
Inform/Games/Heid1i.

2. In that folder, use your text editor to create this source file Heidi.inf:

33

3 * HEIDI: OUR FIRST INFORM GAME

{mo—<—

34

1% -SD

Constant Story "Heidi";
Constant Headline
"AA simple Inform example
“by Roger Firth and Sonja Kesserich.”";

Include "Parser";
Include "VerblLib";

! The game objects

! Entry point routines

[Initialise; 1;

! Standard and extended grammar

Include "Grammar";

Soon, we’ll explain what this means. For now, just type it all in, paying
particular attention to those seven semicolons, and ensuring that the double
quotes "..." always come in pairs. The first line beginning with “1%” is
special, and we’ll talk about it in a moment; the remaining exclamation mark
lines, on the other hand, are purely decorative; they just make the file’s
structure a little easier to understand.

Ensure the file is named Heidi.inf, rather than Heidi.txt or Heidi.inf.txt.

Remember that, throughout this guide, we place the “Tvpe” symbol alongside
pieces of code that we recommend you to type into your own game files as
you read through the examples (which, conversely, means that you don’t
need to type the unmarked pieces of code). You’ll learn Inform more quickly
by trying it for yourself, rather than just taking our word for how things work.

In the same folder, use your text editor to create the compilation support file
Heidi.bat (on a PC):

+include_path=.\,..\..\Lib\Base,..\..\Lib\Contrib | more

[: ..\..\Lib\Base\Inform Heidi
pause "at end of compilation"

mo—<—

or Heidi.command (on a Macintosh):

../../Lib/Base/inform630_macosx Heidi
+include_path=./,../../Lib/Base,../../Lib/Contrib

mo<—f

[: cd ~/Inform/Games/Heidi/

Remember that there’s just one space between “Heidi” and “+include_path”.

3 « HEIDI: OUR FIRST INFORM GAME

Type in the file from scratch, or copy and edit MyGame1.bat (or MyGamel.command).
At this point, you should have a Heidi folder containing two files: Heidi.inf
and either Heidi.bat Or Heidi.command.

Compile the source file Heidi.inf; refer back to “Inform on an IBM PC
(running Microsoft Windows)” on page 19 or “Inform on an Apple
Macintosh (running OS X)” on page 24 for guidance. If the compilation
works, a story file Heidi.z5 appears in the folder. If the compilation doesn’t

work, you’ve probably made a typing mistake; check everything until you
find it.

You can run the story file in your Inform interpreter; you should see this
(except that the Serial number will be different — it’s based on the date):
Heidi
A simple Inform example

by Roger Firth and Sonja Kesserich.
Release 1 / Serial number 040804 / Inform v6.30 Library 6/11 SD

Darkness
It is pitch dark, and you can't see a thing.

>

When you get that far, your template source file is correct. Let’s explain what it
contains.

Understanding the source file

Although we’ve got a certain amount of freedom of expression, source files tend
to conform to a standard overall structure: these lines at the start, that material
next, those pieces coming at the end, and so on. What we’re doing here is
mapping out a structure that suits us, giving ourselves a clear framework onto
which the elements of the game can be fitted. Having a clear (albeit sparse) map
at the start will help us to keep things organised as the game evolves.

We can infer several Inform rules just by looking at the source file.

If the very first line (or lines) of the source file begin with the characters “1%”,
then the compiler treats what follows on those lines as control instructions to
itself rather than as part of the game’s source. The instructions most
commonly placed here are compiler switches, a way of controlling detailed
aspects of how the compiler operates. These particular switches, two of
many, are turning on Strict mode, which makes the game less likely to
misbehave when being played, and Debug mode, which provides some
extra commands which can be helpful when tracking down problems.

NOTE: actually, the -s is redundant, since Strict mode is already on by
default. We include it here as a reminder that (a) to turn Strict mode off; you

35

3 * HEIDI: OUR FIRST INFORM GAME

36

change this setting to -~s, and (b) alphabetic case matters here: -s causes a
display of compiler statistics (and -~s does nothing at all).

Otherwise, when the compiler comes across an exclamation mark, it ignores
the rest of the line. If the ! is at the start of a line, the whole line is ignored; if
the ! is halfway along a line, the compiler takes note of the first half, and then
ignores the exclamation mark and everything after it on that line. We call
material following an exclamation mark, not seen by anybody else, a
comment; it’s often a remark that we write to remind ourselves of how
something works or why we tackled a problem in a particular way. There’s
nothing special about those equals signs: they just produce clear lines across
the page.

It’s always a good idea to comment code as you write it, for later it will help
you to understand what was going on at a particular spot. Although it all
seems clear in your head when you first write it, in a few months you may
suspect that a totally alien mind must have produced that senseless gibberish.

By the way, the compiler doesn’t give special treatment to exclamation marks
in quoted text: ! within quotes "..." is treated as a normal character. On this
line, the first ! is part of the sequence (or string) of characters to be displayed:

print "Hello world!"; I <- is the start of this comment

The compiler ignores blank lines, and treats lots of space like a single space
(except when the spaces are part of a character string). So, these two rules tell
us that we could have typed the source file like this:

Constant Story "Heidi";

Constant Headline

""A simple Inform example”by Roger Firth and Sonja Kesserich.”";

Include "Parser";Include "VerbLib";

[Initialise; 1;

Include "Grammar"
We didn’t type it that way because, though shorter, it’s much harder to read.
When designing a game, you’ll spend a lot of time studying what you’ve
typed, so it’s worthwhile taking a bit of care to make it as readable as possible.

Every game should have the constant definitions for story (the game’s name)
and Headline (typically, information on the game’s theme, copyright,
authorship and so on). These two string values, along with a release number
and date, and details of the compiler, compose the banner which is
displayed at the start of each game.

Every game needs the three lines which Inciude the standard library files -
that is, they merge those files’ contents into your source file:

Include "Parser";
Include "VerbLib";

Include "Grammar"

3 « HEIDI: OUR FIRST INFORM GAME

They always have to be in this order, with Parser and verbLib near the start of
the file, and Grammar near the end.

+ Every game needs to define an Initialise routine (note the British spelling):
[Initialise; 1;

The routine that we’ve defined here doesn’t do anything useful, but it still
needs to be present. Later, we’ll come back to Initialise and explain what a
routine is and why we need this one.

* You'll notice that each of the items mentioned in the previous three rules
ends with a semicolon. Inform is very fussy about its punctuation, and gets
really upset if you forget a terminating semicolon. In fact, the compiler just
keeps reading your source file until it finds one; that’s why we were able to
take three lines to define the Head1ine constant

Constant Headline

"MA simple Inform example
“by Roger Firth and Sonja Kesserich."";

Just to repeat what we said earlier: every game that you design will start out from
a basic source file like this (in fact, it might be sensible to keep a copy of this
template file in a safe place, as a starting point for future games). Think of this
stuff as the basic preparation which you’ll quickly come to take for granted, much
as a landscape artist always begins by sizing the canvas before starting to paint.
So, now that we’ve taken a quick tour of Inform’s general needs, we can start
thinking about what this particular game requires.

Defining the game’s locations

A good starting point in any game is to think about the locations which are
involved: this sketch map shows the four that we’ll use:

of
cottage

In IF, we talk about each of these locations as a room, even though in this
example none of them has four walls. So let’s use Inform to define those rooms.
Here’s a first attempt:

Object "In front of a cottage"
with description
"You stand outside a cottage. The forest stretches east.",
has Tight;

37

3 * HEIDI: OUR FIRST INFORM GAME

Object "Deep in the forest"
with description
"Through the dense foliage, you glimpse a building to the west.
A track heads to the northeast.",
has Tight;

Object "A forest clearing"
with description
"A tall sycamore stands in the middle of this clearing.
The path winds southwest through the trees.",
has light;

Object "At the top of the tree"
with description "You cling precariously to the trunk.",
has light;

Again, we can infer some general principles from these four examples:

* A room definition starts with the word object and ends, about four lines later,
with a semicolon. Each of the components that appears in your game — not
only the rooms, but also the people, the things that you see and touch,
intangibles like a sound, a smell, a gust of wind - is defined in this way; think
of an “object” simply as the general term for the myriad thingies which
together comprise the model world which your game inhabits.

* The phrase in double quotes following the word object is the name that the
interpreter uses to provide the player character with a list of the objects
around her: where she is, what she can see, what she’s holding, and so on.

NOTE: we’re using the word “player” to mean both the person who is playing
the game, and the principal protagonist (often known as the player character)
within the game itself. Since the latter — Heidi - is female, we’ll refer to the
player as “she” while discussing this game.

* Akeyword with follows, which simply tells the compiler what to expect next.

* The word description, introducing another piece of text which gives more
detail about the object: in the case of a room, it’s the appearance of the
surrounding environment when the player character is in that room. The
textual description is given in double quotes, and is followed by a comma.

* Near the end, the keyword has appears, which again tells the compiler to
expect a certain kind of information.

* The word 11ght says that this object is a source of illumination, and that
therefore the player character can see what’s happening here. There has to
be at least one light source in every room (unless you want the player to be
told that “It’s pitch dark and you can’t see a thing”); most commonly, that
light source is the room itself.

A smidgeon of background may help set this into context (there’s more in the
next chapter). An object can have both properties (introduced by the keyword
with) and attributes (written after the word has). A property has both a name (like

38

3 « HEIDI: OUR FIRST INFORM GAME

description) and a value (like the character string "vou stand outside a cottage. The
forest stretches east."); an attribute has merely a name.

In a little while, when you play this game, you’ll observe that it starts like this:

In front of a cottage
You stand outside a cottage. The forest stretches east.

And here you can see how the room’s name (In front of a cottage) and
descriptknl(You stand outside a cottage. The forest stretches east.)are used.

Joining up the rooms

We said that this was a first attempt at defining the rooms; it’s fine as far as it goes,
but a few bits of information are missing. If you look at the game’s sketch map,
you can see how the rooms are intended to be connected; from “Deep in the
forest”, for example, the player character should be able to move west towards
the cottage, or northeast to the clearing. Now, although our descriptions mention
or imply these available routes, we also need to explicitly add them to the room
definitions in a form that the game itself can make sense of. Like this:

Object before_cottage "In front of a cottage"
with description
"You stand outside a cottage. The forest stretches east.",
e_to forest,
has Tight;

Object forest "Deep in the forest"
with description
"Through the dense foliage, you glimpse a building to the west.
A track heads to the northeast.",
w_to before_cottage,
ne_to clearing,
has Tight;

Object clearing "A forest clearing"
with description
"A tall sycamore stands in the middle of this clearing.
The path winds southwest through the trees.",
sw_to forest,
u_to top_of_tree,
has Tight;

Object top_of_tree "At the top of the tree"
with description "You cling precariously to the trunk.",
d_to clearing,
has Tight;

We’ve made two changes to the room objects.

+ First, between the word object and the object’s name in double quotes, we’ve
inserted a different type of name: a private, internal identification, never seen
by the player; one that we can use within the source file when one object
needs to refer to another object. For example, the first room is identified as
before_cottage, and the second as forest.

39

3 * HEIDI: OUR FIRST INFORM GAME

Unlike the external name contained in double quotes, the internal identifier
has to be a single word - that is, without spaces. To aid readability, we often
use an underscore character to act as sort of pseudo-space: before_cottage is
a bit clearer than beforecottage.

* Second, we’ve added lines after the object descriptions which use those
internal identifiers to show how the rooms are connected; one line for each
connection. The before_cottage object has this additional line:

e_to forest,

This means that a player standing in front of the cottage can type GO EAST
(or EAST, or just E), and the game will transport her to the room whose
internal identification is forest. If she tries to move in any other direction
from this room, she’ll be told “You can’t go that way”.

What we’ve just defined is a one-way easterly connection:
before_cottage—>forest. The forest object has two additional lines:

w_to before_cottage,
ne_to clearing,

The first line defines a westerly connection forest—before_cottage (thus
enabling the player character to return to the cottage), and the second defines
a connection forest—>clearing which heads off to the northeast.

Inform provides for eight “horizontal” connections (n_to, ne_to, e_to, se_to,
s_to, sw_to, w_to, nu_to) two “vertical” ones (u_to, d_to) and two specials in_to,
and out_to. You’ll see some of these used for the remaining inter-room
connections.

There’s one last detail to attend to before we can test what we’ve done. You’ll
recollect that our story begins with Heidi standing in front of her cottage. We
need to tell the interpreter that before_cottage is the room where the game starts,
and we do this in the Initialise routine:

[Initialise; location = before_cottage; 1;

location is a variable, part of the library, which tells the interpreter in which
room the player character currently is. Here, we’re saying that, at the start of the
game, the player character is in the before_cottage room.

Now we can add what we’ve done to the Heidi.inf source file template. At this
stage, you should study the four room definitions, comparing them with the
sketch map until you’re comfortable that you understand how to create simple
rooms and define the connections between them.

40

3 « HEIDI: OUR FIRST INFORM GAME

!

{mo—<—

Constant Story "Heidi";
Constant Headline

"AA simple Inform example
“by Roger Firth and Sonja Kesserich.”";

Include "Parser";
Include "VerbLib";

!

! The game objects

Object
with
has

Object
with

has

Object
with

has

Object
with

has

before_cottage "In front of a cottage"
description
"You stand outside a cottage. The forest stretches east.",
e_to forest,
light;

forest "Deep in the forest”

description
"Through the dense foliage, you glimpse a building to the west.
A track heads to the northeast.",

w_to before_cottage,

ne_to clearing,

light;

clearing "A forest clearing”

description
"A tall sycamore stands in the middle of this clearing.
The path winds southwest through the trees.",

sw_to forest,

u_to top_of_tree,

light;

top_of_tree "At the top of the tree"

description "You cling precariously to the trunk.",
d_to clearing,

Tight;

! Entry point routines

[Initialise; location = before_cottage; 1;

! Standard and extended grammar

Include "Grammar";

!

Type this in, as always taking great care with the punctuation — watch those
commas and semicolons. Compile it, and fix any mistakes which the compiler
reports. You can then play the game in its current state. Admittedly, you can’t do
very much, but you should be able to move freely among the four rooms that
you’ve defined.

41

3 * HEIDI: OUR FIRST INFORM GAME

NOTE: in order to minimise the amount of typing that you have to do, the
descriptive text in this game has been kept as short as possible. In a real
game, you would typically provide more interesting descriptions than these.

Adding the bird and the nest

Given what we said earlier, you won’t be surprised to hear that both the bird and
its nest are Inform objects. We’ll start their definitions like this:
Object bird "baby bird"

with description "Too young to fly, the nestling tweets helplessly.",
has ;

Object nest "bird's nest"
with description "The nest is carefully woven of twigs and moss.",
has ;

You can see that these definitions have exactly the same format as the rooms we
defined previously: a one-word internal identifier (bird, nest), and a word or
phrase naming the object for the player’s benefit (baby bird, bird's nest). They
both have some descriptive detail: for a room this is printed when the player first
enters, or when she types LOOK; for other objects it’s printed when she
EXAMINESs that object. What they don’t have are connections (e_to, w_to, etc.
apply only to rooms) or 1ight (it’s not necessary — the rooms ensure that light is
available).

When the game is running, the player will want to refer to these two objects,
saying for instance EXAMINE THE BABY BIRD or PICK UP THE NEST. For
this to work reliably, we need to specify the word (or words) which relate to each
object. Our aim here is flexibility: providing a choice of relevant vocabulary so
that the player can use whatever term seems appropriate to her, with a good
chance of it being understood. We add a line to each definition:

Object bird "baby bird"

with description "Too young to fly, the nestling tweets helplessly.",

name 'baby' 'bird' 'nestling',
has ;

Object nest "bird's nest"

with description "The nest is carefully woven of twigs and moss.",
name 'bird”"s' 'nest' 'twigs' 'moss’',
has ;
The name introduces a list in single quotes '...". We call each of those quoted things
a dictionary word, and we do mean “word”, not “phrase” ('baby' 'bird' rather
than 'baby bird'); you can’t uses spaces, commas or periods in dictionary words,
though there’s a space between each one, and the whole list ends with a comma.
The idea is that the interpreter decides which object a player is talking about by
matching what she types against the full set of all dictionary words. If the player
mentions BIRD, or BABY BIRD, or NESTLING, it’s the baby bird that she means;
if she mentions NEST, BIRD'S NEST or MOSS, it’s the bird's nest. And if she

42

3 « HEIDI: OUR FIRST INFORM GAME

types NEST BABY or BIRD TWIGS, the interpreter will politely say that it
doesn’t understand what on earth she’s talking about.

NOTE: you’ll notice the use of 'bird"s' to define the dictionary word BIRD'S;
this oddity is necessary because the compiler expects the single quotes in the
list always to come in pairs — one at the start of the dictionary word, and one
at the end. If we had typed 'bird's' then the compiler would find the opening
quote, the four letters b i r and d, and what looks like the closing quote. So
far so good; it’s read the word BIRD and now expects a space before the next
opening quote... but instead finds s* which makes no sense. In cases like this
we must use the circumflex * to represent the apostrophe, and the compiler
then treats bird's as a dictionary word.

You may be wondering why we need a list of name words for the bird and its nest,
yet we didn’t when we defined the rooms? It’s because the player can’t interact

with a room in the same way as with other objects; for example, she doesn’t need
to say EXAMINE THE FOREST - just being there and typing LOOK is sufficient.

The bird’s definition is complete, but there’s an additional complexity with the
nest: we need to be able to put the bird into it. We do this by labelling the nest
as a container — able to hold other objects — so that the player can type PUT (or
INSERT) BIRD IN (or INTO) NEST. Furthermore, we label it as open; this
prevents the interpreter from asking us to open it before putting in the bird.
Object nest "bird's nest"
with description "The nest is carefully woven of twigs and moss.",
name 'bird”s' 'nest' 'twigs' 'moss',

has container open;
Both objects are now defined, and we can incorporate them into the game. To
do this, we need to choose the locations where the player will find them. Let’s say
that the bird is found in the forest, while the nest is in the clearing. This is how
we set this up:

with description "Too young to fly, the nestling tweets helplessly.",
name 'baby' 'bird' 'nestling',
has ;

j} Object bird "baby bird" forest
y
P
£

Object nest "bird's nest" clearing
with description "The nest is carefully woven of twigs and moss.",
name 'bird”s' 'nest' 'twigs' 'moss',
has container open;
Read that first line as: “Here’s the definition of an object which is identified
within this file as bird, which is known to the player as baby bird, and which is
initially located inside the object identified within this file as forest.”

Where in the source file do these new objects fit? Well, anywhere really, but
you’ll find it convenient to insert them following the rooms where they’re found.
This means adding the bird just after the forest, and the nest just after the clearing.
Here’s the middle piece of the source file:

43

3 * HEIDI: OUR FIRST INFORM GAME

! The game objects

Object before_cottage "In front of a cottage"
with description
"You stand outside a cottage. The forest stretches east.",
e_to forest,
has light;

Object forest "Deep in the forest"
with description
"Through the dense foliage, you glimpse a building to the west.
A track heads to the northeast.",
w_to before_cottage,
ne_to clearing,
has light;

Object bird "baby bird" forest

with description "Too young to fly, the nestling tweets helplessly.",
name 'baby' 'bird' 'nestling',
has ;

Object <clearing "A forest clearing”
with description
"A tall sycamore stands in the middle of this clearing.
The path winds southwest through the trees.",
sw_to forest,
u_to top_of_tree,
has light;

Object nest "bird's nest" clearing
with description "The nest is carefully woven of twigs and moss.",
name 'bird*s' 'nest' 'twigs' 'moss',
has container open;

Object top_of_tree "At the top of the tree"
with description "You cling precariously to the trunk.",
d_to clearing,
has light;

Make those changes, recompile the game, play it and you’ll see this:

Deep in the forest
Through the dense foliage, you glimpse a building to the west. A track heads
to the northeast.

You can see a baby bird here.

Adding the tree and the branch

The description of the clearing mentions a tall sycamore tree, up which the
player character supposedly “climbs”. We’d better define it:

44

3 « HEIDI: OUR FIRST INFORM GAME

with description
"Standing proud in the middle of the clearing,
the stout tree Tooks easy to climb.",
name 'tall' 'sycamore' 'tree' 'stout' 'proud',
has scenery;

j} Object tree "tall sycamore tree" clearing
y
P
E

Everything there should be familiar, apart from that scenery at the end. We’ve
already mentioned the tree in the description of the forest clearing, so we don’t
want the interpreter adding “You can see a tall sycamore tree here” afterwards,
as it does for the bird and the nest. By labelling the tree as scenery we suppress
that, and also prevent it from being picked up by the player character.

One final object: the branch at the top of the tree. Again, not many surprises in
this definition:

with description "It's flat enough to support a small object.",
name 'wide' 'firm' 'flat' 'bough' 'branch',
has static supporter;

:} Object branch "wide firm bough" top_of_tree

mo—<—

The only new things are those two labels. static is similar to scenery: it prevents
the branch from being picked up by the player character, but doesn’t suppress
mention of it when describing the setting. And supporter is rather like the
container that we used for the nest, except that this time the player character can
put other objects onto the branch. (In passing, we’ll mention that an object can’t
normally be both a container anda supporter.) And so here are our objects again:

|
! The game objects

Object before_cottage "In front of a cottage"
with description
"You stand outside a cottage. The forest stretches east.",
e_to forest,
has Tight;

Object forest "Deep in the forest"
with description
"Through the dense foliage, you glimpse a building to the west.
A track heads to the northeast.",
w_to before_cottage,
ne_to clearing,
has Tight;

Object bird "baby bird" forest

with description "Too young to fly, the nestling tweets helplessly.",
name 'baby' 'bird' 'nestling',
has ;

Object <clearing "A forest clearing”
with description
"A tall sycamore stands in the middle of this clearing.
The path winds southwest through the trees.",
sw_to forest,
u_to top_of_tree,
has Tight;

45

3 * HEIDI: OUR FIRST INFORM GAME

Object nest "bird's nest" clearing
with description "The nest is carefully woven of twigs and moss.",
name 'bird®s' 'nest' 'twigs' 'moss',
has container open;

Object tree "tall sycamore tree" clearing
with description
"Standing proud in the middle of the clearing,
the stout tree Tooks easy to climb.",
name 'tall' 'sycamore' 'tree' 'stout' 'proud',
has scenery;

Object top_of_tree "At the top of the tree"
with description "You cling precariously to the trunk.",
d_to clearing,
has light;

Object branch "wide firm bough" top_of_tree
with description "It's flat enough to support a small object.",
name 'wide' 'firm' 'flat' 'bough' ‘'branch',
has static supporter;

Once again, make the changes, recompile, and investigate what you can do in
your model world.

Finishing touches

Our first pass at the game is nearly done; just two more changes to describe. The
first is easy: Heidi wouldn’t be able to climb the tree carrying the bird and the
nest separately: we want the player character to put the bird into the nest first.
One easy way to enforce this is by adding a line near the top of the file:

Constant Story "Heidi";
Constant Headline
"*A simple Inform example
“by Roger Firth and Sonja Kesserich."";

{mo~<—

Constant MAX_CARRIED 1;

The value of MAx_CARRIED limits the number of objects that the player character can
be holding at any one time; by setting it to 1, we’re saying that she can carry the
bird or the nest, but not both. However, the limit ignores the contents of container
or supporter objects, so the nest with the bird inside it is still counted as one object.

The other change is slightly more complex and more important: there’s currently
no way to “win” the game! The goal is for the player character to put the bird in
the nest, take the nest to the top of the tree, and place it on the branch; when that
happens, the game should be over. This is one way of making it happen:

46

{mo—<—

3 « HEIDI: OUR FIRST INFORM GAME

Object branch "wide firm bough" top_of_tree
with description "It's flat enough to support a small object.",
name 'wide' 'firm' 'flat' 'bough' 'branch',
each_turn [; if (nest in branch) deadflag = 2; 1,
has static supporter;

NOTE: here’s an explanation of what’s going on. If you find this difficult to
grasp, don’t worry. It’s the hardest bit so far, and it introduces several new
concepts all at once. Later in the guide, we’ll explain those concepts more
clearly, so you can just skip this bit if you want.

The variable deadf1ag, part of the library, is normally 0. If you set its value to
2, the interpreter notices and ends the game with “You have won”. The
statement:

if (nest in branch) deadflag = 2;

should be read as: “Test whether the nest is currently in the branch (if the
branch is a container) or on it (if the branch is a supporter); if it is, set the value
of deadflag to 2; if it isn’t, do nothing.” The surrounding part:

each_turn [; ... 1,

should be read as: “At the end of each turn (when the player is in the same
room as the branch), do whatever is written inside the square brackets”. So,
putting that all together:

+ Atthe end of each turn (after the player has typed something and pressed
the Enter key, and the interpreter has done whatever was requested) the
interpreter checks whether the player and the branch are in the same
room. If not, nothing happens. If they’re together, it looks to see where
the nest is. Initially it’s in the c1earing, so nothing happens.

+ Also at the end of each turn, the interpreter checks the value of deadf1ag.
Usually it’s 0, so nothing happens.

* Finally the player character puts the nest on the branch. “Ahal” says the
interpreter (to itself, of course), and sets the value of deadf1ag to 2.

+ Immediately afterwards, (another part of) the interpreter checks and
finds that the value of deadf1ag has changed to 2, which means that the
game is successfully completed; so, it says to the player, “you’ve won!”

That’s as far as we’ll take this example for now. Make those final changes,
recompile, and test what you’ve achieved. You’ll probably find a few things that
could be done better — even on a simple game like this there’s considerable scope
for improvement - so we’ll revisit Heidi in her forest shortly. First, though, we’ll
recap what we’ve learnt so far.

47

3 * HEIDI: OUR FIRST INFORM GAME

48

4 « REVIEWING THE BASICS
4 - Reviewing the basics

G was a gamester, who had but ill-luck;
H was a hunter, and hunted a buck.

oing through the design of our first game in the previous chapter has
introduced all sorts of Inform concepts, often without giving you
much detail about what’s been happening. So let’s review some of

\ what we’ve learnt so far, in a slightly more organised fashion. We’ll
talk about “Constants and variables” on page 49, “Object definitions” on

page 50, “Object relationships — the object tree” on page 52, “Things in quotes”
on page 55, and “Routines and statements” on page 56.

Constants and variables

Superficially similar, constants and variables are actually very different beasts.

Constants

A constant is a name to which a value is given once and once only; you can’t
later use that name to stand for a different value. Think of it as a stone tablet on
which you carve a number: a carving can’t be undone, so that you see the same
number every time you look at the stone.

So far, we’ve seen a constant being set up with its value as a string of characters:
Constant Story "Heidi";

and as a number:
Constant MAX_CARRIED 1;

Those two examples represent the most common ways in which constants are

used in Inform.

Variables

A variable is a name to which a value is given, but that value can be changed to
a different one at any time. Think of it as a blackboard on which you mark a
number in chalk: whenever you need to, just wipe the board and write up a new
number.

We haven’t set up any variables of our own yet, though we’ve used a couple
which the library created like this:

Global Tocation;
Global deadflag;

The value of a global variable created in this way is initially 0, but you can
change it at any time. For example, we used the statement:

49

4 « REVIEWING THE BASICS

lTocation = before_cottage;

to reset the value of the 1ocation variable to the before_cottage object, and we
wrote:

if (nest in branch) deadflag = 2;

to reset the value of the deadf1ag variable to 2.

Later, we’ll talk about the local variable (see “Routines” on page 179) and about
using object properties as variables (see “Objects” on page 177).

Object definitions

The most important information you should have gleaned from the previous
chapter is that your entire game is defined as a series of objects. Each room is an
object, each item that the player sees and touches is an object; indeed the player
herself is also an object (one that’s automatically defined by the library).

The general model of an object definition looks like this:

Object obj_id "“external_name" parent_obj_id

with property value ,
property value ,

property value ,

has attribute attribute ... attribute

The definition starts with the word object and ends with a semicolon; in between
are three major blocks of information:

+ immediately after the word object is the header information;
+ the word with introduces the object’s properties;

+ the word has introduces the object’s attributes.

Object headers
An object header comprises up to three items, all optional:

* Aninternal obj_id by which other objects refer to this object. It’s a single
word (though it can contain digits and underscores) of up to thirty-two
characters, and it must be unique within the game. You can omit the obj_id
if this object isn’t referred to by any other objects.

For example: bird, tree, top_of_tree.

* An external_name, in double quotes, which is what the interpreter uses when
referring to the object. It can be one or more words, and need not be unique

50

4 « REVIEWING THE BASICS

(for instance, you might have several "Somewhere in the desert" rooms).
Although not mandatory, it’s best to give every object an externai_name.

For exanﬂple:”baby bird", "tall sycamore tree", "At the top of the tree"

* The internal obj_id of another object which is the initial location of this object
(its “parent” — see the next section) at the start of the game. This is omitted
from objects which have no initial parent; it’s always omitted from a room.

For example: the definition of the bird starts like this, specifying that at the
start of the game, it can be found in the forest room (though later the player
character will pick it up and move it around):

Object bird "baby bird" forest

The tree starts like this; the only real difference is that, because the player
character can’t move a scenery object, it’s always going to be in the clearing:

Object tree "tall sycamore tree" clearing

NOTE: there’s an alternative method for defining an object’s initial location,
using “arrows” rather than the parent’s internal obj_id. For example, the
definition of the bird could have started like this:

Object -> bird "baby bird"

We don’t use the arrows method in this guide, though we do describe how it
works in “Setting up the object tree” on page 185.

Object properties

An object’s property definitions are introduced by the with keyword. An object
can have any number of properties, and they can be defined in any order. Each
definition has two parts: a name, and a value; there’s a space between the two
parts, and a comma at the end.

Think of each property as a variable which is specifically associated with that
object. The variable’s initial setting is the supplied value; if necessary, it can be
reset to other values during play (though in fact most property values don’t
change in this way).

Here are examples of the properties that we’ve come across so far:

description "The nest is carefully woven of twigs and moss.",

e_to forest,

name 'baby' 'bird' 'nestling',

each_turn [; if (nest in branch) deadflag = 2; 1,
By happy coincidence, those examples also demonstrate most of the different
types of value which can be assigned to a property. The value associated with the
description property in this particular example is a string of characters in double

51

4 « REVIEWING THE BASICS

quotes; the value associated with this e_to property is the internal identity of an
object; the name property is a bit unusual - its value is a list of dictionary words,
each in single quotes; the each_turn property has a value which is an embedded
routine (see “Embedded routines” on page 58). The only other type of value
which is commonly found is a simple number; for example:

capacity 10,

In all, the library defines around forty-eight standard properties — like name and
each_turn — which you can associate with your objects; there’s a complete list in
“Object properties” on page 266. And in “William Tell: in his prime” on page 91
we show you how to invent your own property variables.

Object attributes

An object’s attribute list is introduced by the has keyword. An object can have
any number of attributes, and they can be listed in any order, with a space
between each.

As with properties, you can think of each attribute as a variable which is
specifically associated with that object. However, an attribute is a much more
limited form of variable, since it can have only two possible states: present, and
absent (also known as set/clear, on/off, or true/false; incidentally, a two-state
variable like this is often called a flag). Initially, an attribute is either present (if
you mention its name in the list) or absent (otherwise); if necessary, its state can
change during play (and this is relatively common). We often say that a certain
object currently kas a certain attribute, or that conversely it hasn’t got it.

The attributes that we’ve come across so far are:
container Tight open scenery static supporter

Each of those answers a question: Is this object a container? Does it provide light?
and so on. If the attribute is present then the answer is Yes; if the attribute isn’t
present, the answer is No.

The library defines around thirty standard attributes, listed in “Object attributes”
on page 269. Although you can devise additional attributes — see “Common
properties and attributes” on page 185 — in practice you seldom need to.

Object relationships — the object tree

Not only is your game composed entirely of objects, but also Inform takes great
care to keep track of the relationships between those objects. By “relationship”
we don’t mean that Walter is Wilhelm’s son, while Helga and Wilhelm are just
good friends; it’s a much more comprehensive exercise in recording exactly
where each object is located, relative to the other objects in the game.

Despite what we just said, Inform relationships are managed in terms of parent
and child objects, though in a much broader sense than Wilhelm and Walter.

52

4 « REVIEWING THE BASICS

When the player character is in a particular room - for example the forest — we
can say that:

+ the forest object is the parent of the player object, or alternatively

* the player object is a child of the forest object.

Also, if the player is carrying an object — for example the nest — we say that:
+ the player object is the parent of the nest object, or that

* the nest object is a child of the player object.

Note the emphasis there: an object has exactly one parent (or no parent at all), but
can have any number of child objects (including none).

For an example of an object having more than one child, think about the way we
defined the nest and tree objects:

Object nest "bird's nest" clearing
Object tree "tall sycamore tree" clearing

We used the third of the header items to say that the clearing was the parent of
the nest, and also that the clearing was the parent of the tree; that is, both nest
and tree are child objects of the clearing.

NOTE: a “room” isn’t anything magical; it’s just an object which never has a
parent, and which may from time to time have the player object as a child.

When we defined the bird, we placed it in the forest, like so:

Object bird "baby bird" forest

We didn’t place any other objects in that room, so at the start of the game the
forest was the parent of the bird (and the bird was the only child of the forest).
But what happens when the player character, initially in the before_cottage room,
goes EAST to the forest? Answer: the player’s parent is now the forest, and the
forest has two children — the bird and the player. This is a key principle of the
way Inform manages its objects: the parent—child relationships between objects
change continuously, often dramatically, as the game progresses.

Another example of this: suppose the player character picks up the