curllnterface
Simple Web Access

2.4.0

31 August 2024

Christopher Jefferson

Michael Young

Christopher Jefferson
Email: caj21@st-andrews.ac.uk
Homepage: http://caj.host.cs.st-andrews.ac.uk/
Address: School of Computer Science
University of St Andrews
Jack Cole Building, North Haugh
St Andrews, Fife, KY16 9SX
United Kingdom

Michael Young
Email: mct25@st-andrews.ac.uk
Homepage: http://mct25.host.cs.st-andrews.ac.uk/
Address: School of Computer Science
University of St Andrews
Jack Cole Building, North Haugh
St Andrews, Fife, KY16 9SX
United Kingdom

mailto://caj21@st-andrews.ac.uk
http://caj.host.cs.st-andrews.ac.uk/
mailto://mct25@st-andrews.ac.uk
http://mct25.host.cs.st-andrews.ac.uk/

Contents

1 Overview

1.1 Imstalling curllnterface
1.2 Functions i e e e e e e
Index

W

Chapter 1

Overview

CurlInterface allows a user to interact with http and https servers on the internet, using the ’curl’
library. Pages can be downloaded from a URL, and http POST requests can be sent to the URL for
processing.

1.1 Installing curllnterface

curllnterface requires the ’curl’ library, available from https://curl.haxx.se/. Instructions for
building and installing curl can be found at https://curl.haxx.se/docs/install.html, however
in most systems curl can be installed from your OS’s package manager.

1.1.1 Linux

* On Debian and Ubuntu, call: apt-get install libcurl4-gnutls-dev

* On Redhat and derivatives, call: yum install curl-devel

1.1.2 Cygwin

Install 1ibcurl-devel from the cygwin package manager

1.1.3 macOS

curl is installed by default on Macs, but libcurl may be required.
* Homebrew: brew install curl
* Fink: fink install libcurléd

* MacPorts: port install curl

1.2 Functions

curllnterface currently provides the following functions for interacting with URLs:

https://curl.haxx.se/
https://curl.haxx.se/docs/install.html

curlInterface 4

1.2.1 DownloadURL

> DownloadURL(URL[, opts]) (function)
Returns: arecord
Downloads a URL from the internet. URL should be a string describing the address, and should
start with either "http://" or "https://". For descriptions of the output and the additional argument opts,
see CurlRequest (1.2.4).
Example
gap> r := DownloadURL("www.gap-system.org");;
gap> r.success;
true
gap> r.result{[1..50]};
"<?xml version=\"1.0\" encoding=\"utf-8\"7?>\n\n<!DOCTYPE "

1.2.2 PostToURL

> PostToURL(URL, str[, opts]) (function)
Returns: a record
Sends an HTTP POST request to a URL on the internet. URL should be a string describing the
address, and should start with either "http://" or "https://". str should be the string which will be sent
to the server as a POST request. For descriptions of the output and the additional argument opts, see
CurlRequest (1.2.4).

Example
gap> r := PostToURL("www.httpbin.org/post", "animal=tiger");;
gap> r.success;

true

gap> r.result{[51..100]};

"\"form\": {\n \"animal\": \"tiger\"\n }, \n \"headers\":"

1.2.3 DeleteURL

> DeleteURL(URL[, opts]) (function)
Returns: arecord
Attempts to delete a file on the internet, by sending an HTTP DELETE request to the given URL.
URL should be a string describing the address to be deleted, and should start with either "http://" or
"https://". For descriptions of the output and the additional argument opts, see CurlRequest (1.2.4).
Example
gap> r := DeleteURL("www.google.com");;
gap> r.success;
true
gap> r.result{[1471..1540]};
"<p>The request method <code>DELETE</code> is inappropriate for the URL"

1.2.4 CurlRequest

> CurlRequest(URL, type, out_stringl[, opts]) (function)
Returns: a record

curlInterface 5

Sends an HTTP request of type type to a URL on the internet. URL, type, and out_string
should all be strings: URL is the URL of the server (which should start with "http://" or "https://"),
type is the type of HTTP request (e.g. "GET"), and out_string is the message, if any, to send to
the server (in requests such as GET this will be ignored).

An optional fourth argument opts may be included, which should be a record specifying addi-
tional options for the request. The following options are supported:

» verifyCert: a boolean describing whether to verify HTTPS certificates (corresponds to the
curl options CURLOPT_SSL_VERIFYPEER and CURLOPT_SSL_VERIFYHOST, the default is true
for both);

* verbose: a boolean describing whether to print extra information to the screen (corresponds to
the curl option CURLOPT_VERBOSE, the default is false);

* followRedirect: a boolean describing whether to follow redirection to another URL (corre-
sponds to the curl option CURLOPT_FOLLOWLOCATION, the default is true);

* failOnError: a boolean describing whether to regard 404 (and other 4xx) status codes as error
(corresponds to the curl option CURLOPT_FAILONERROR, the default is false).

* maxTime: Maximum time in seconds that you allow each transfer to take. 0 means no limitation.
(default 0).

As output, this function returns a record containing some of the following components, which
describe the outcome of the request:

* success: a boolean describing whether the request was successfully received by the server;
* result: body of the information sent by the server (only if success = true);
* error: human-readable string saying what went wrong (only if success = false).

Most of the standard HTTP request types should work, but currently only body information is
returned. To see headers, consider using the verbose option. For convenience, dedicated functions
exist for the following request types:

* DownloadURL (1.2.1) for GET requests;
* PostToURL (1.2.2) for POST requests;

* DeleteURL (1.2.3) for DELETE requests.

Example
gap> r := CurlRequest("https://www.google.com",
> "HEAD",
> " s
> rec(verifyCert := false));
rec(result := "", success := true)

gap> r := CurlRequest("www.httpbin.org/post", "POST", "animal=tiger");;
gap> r.success;

true

gap> r.result{[51..100]};

"\"form\": {\n \"animal\": \"tiger\"\n }, \n \"headers\":"

Index

CurlRequest, 4

DeleteURL, 4
DownloadURL, 4

PostToURL, 4

	Overview
	Installing curlInterface
	Functions

	Index

